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Abstract. The relaxation of an electron excited to the high energy region, is accompanied by the creation
of various excitations (plasmons, quasi-particles, phonons). The stages of this many-body, non-stationary
phenomenon (cascade) are described microscopically. The electron distribution function n(ε, t) and char-
acteristic times for the whole energy range, are calculated.

PACS. 78.47.+p Time-resolved optical spectroscopies and other ultrafast optical measurements
in condensed matter – 29.40.Wk Solid-state detectors – 72.10.-d Theory of electronic transport;
scattering mechanisms

1 Introduction

This paper is concerned with the relaxation phenomenon
in solids. Non-equilibrium state could be created by in-
coming radiation (e.g., by X or γ rays), or by incoming
electron beams. The energy input leads to an appearance
of quasiparticles whose initial energy εi usually greatly
exceeds the Debay energy (εi � Ω̃, Ω̃ ∼= ΩD). The fol-
lowing relaxation process is a non-stationary phenomenon
which is accompanied by many collisions and creation new
excitations. The analysis of this process, so-called a cas-
cade, is interesting for its own sake, but it is also important
for making various detectors (see e.g. [1,2]).

As is known, the cascade contains several stages [3,4].
The initial stage corresponds to the high energy region εi,
so that the relaxation proceeds through electronic chan-
nels. If εi > ωp (ωp is the plasmon energy), then at first
one can observe a creation of collective electronic exci-
tations (plasmons) which follows by plasmons decay and
by electron-electron collisions. The consequent lowering of
quasiparticle energy leads to the situation when the scat-
tering by optical and acoustic phonons becomes dominant.
We described in our paper [5] the last stage of the cascade,
namely, the relaxation caused by scattering of carriers by
acoustic phonons. We analyzed also the tunneling super-
conducting detectors. In the present paper we consider the
whole energy range and various relaxation channels.

The cascade has been analyzed in many interesting pa-
pers (see, e.g. [6–11]). A phenomenological model used in
many studies, was introduced in [3]. Microscopic treat-
ment for the case close to equilibrium was described
in [6]. A phenomenological approach based on the two-
temperature model (TTM, see e.g. [7–10]) has been also
popular. Nevertheless, it is known (see, e.g. [11]), that the

TTM model is unable to provide a description in some
real cases.

Our goal is to develop a microscopic theory of the cas-
cade. The cascade is a strong non-stationary phenomenon,
and we consider various relaxation channels.

We focus on the relaxation in metals and semiconduc-
tors with high carrier concentration, so that the value of
the plasmon energy greatly exceeds the phonon energy
scale (ωp � Ω). Some systems (e.g., 2D electron gas,
layered conductors, semiconductors with low carrier con-
centration) are characterized by presence of low energy
plasmon modes; they will be considered elsewhere.

The structure of the paper is as follows. Section 2
describes the electronic stages of the cascade; they in-
volve collective and one-particle excitations. Relaxation
via scattering by phonons is analyzed in Section 3. Sec-
tion 4 contains a general discussion and summary of
results.

2 Cascade. Electronic channels

Electronic losses and plasmons

Consider initially excited electronic state. This state may
occur through excitation by high energy quanta (e.g.,
X-rays) or because of injection of electrons by electronic
beams. As a result, we create a non-equilibrium distri-
bution n(ε, t), so that at the beginning of the cascade the
system contains excited carriers; additional energy of such
carrier ε− εF greatly exceeds that for phonons. Then the
relaxation occurs initially through electronic channels. If
the value of the initial energy εi is such that εi > ωp,
ωp is the plasmon energy, then the creation of plasmons is
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a first stage of the cascade. Usual treatment of such phe-
nomenon contains calculation of the energy losses (see,
e.g., [12–14]). Our goal is different. We are interested in
the evolution of the distribution function n(ε, t) and in
the corresponding time scale. According to [12–14] one
can write the following set of equations:

∂n(ε, t)/∂t = −λpl

(
ω3

p/ε
)1/2

n(ε, t)θ(ε − ωp)

+ λpl

(
ω3

p/(ε + ωp)
)1/2

n(ε + ωp) (1a)

∂Npl/∂t = λpl

∫ ∞

ωp

dεn(ε, t)
(
ω3

p/ε
)1/2 − Npl/τpl. (1b)

Here Npl is the plasmon distribution function, τpl is the
characteristic time for the plasmon decay into electron-
hole pairs, λpl is the electron-plasmon coupling constant.
The coefficients in equation (1a) are written with the log-
arithmic accuracy.

Assume that εi � ωp, then equation (1a) can be re-
duced to the form:

∂n(ε, t)/∂t = λplωp(ωp/ε)3/2(−n(ε, t)/2 + ε∂n(ε, t)/∂t).
(2)

Equation (2) has a solution:

n1(ε, t) = n0(ε1)(ε/ε1)1/2. (3)

Here n0(ε) ≡ n(ε, 0) is the initial distribution, and ε
and ε1 are connected by the relation

ε3/2 = ε
3/2
1 − 1.5λplω

5/2
p t. (4)

Equations (3, 4) describe the electronic distribution func-
tion n1(ε, t) ≡ n(ε, t) for the initial stage of the cascade.
One can see directly from equation (4) that the first stage
of the cascade, namely, the decrease in energy scale from εi

to the threshold ωp � εi is characterized by the effective
time scale τpl

eff :

τpl
eff

∼= (λplωp)−1(εi/ωp)3/2. (5)

Usually τpl � τpl
eff . As a result, all initial excitations with

ε ∼= εi will convert into plasmons. The plasmons solution
is described by the relation (see Eq. (1b))

Npl(t) = N0 exp(−t/τpl) (6)

where

N0 = ω−1
p

∫ ∞

ωp

dεεn0(ε).

The plasmons will now decay into electron-hole excita-
tions, and we arrive at the next stage of the cascade where
the major role is played by one-particle electronic excita-
tions with energy ε < ωpl. Let us turn to the description
of this stage.

The region ε < ωpl. Electron-electron collisions

Consider now the situation of a non-equilibrium electron
distribution with energies below the plasmon threshold.
The one-particle excitations could be created by the plas-
mons decay (see above), by initial optical excitation or by
electron injection so that the initial energy ε < ωpl. The
relaxation can go through electron-electron or electron-
phonon channels, and the general equation is:

∂n(ε, t)/∂t = Ie−e
coll + Ie−ph

coll (7)

Here Ie−e
coll and Ie−ph

coll are the corresponding collision in-
tegrals. There are different optical and acoustic phonon
branches: Ω ∼= Ωopt and Ω ∼= ΩD, Ω is the character-
istic phonon energy, Ωopt is the frequency of the optical
branch and ΩD is the Debye frequency of the acoustic
branch. Since ωp � ΩD, Ωopt � ΩD, the initial energy
scale greatly exceeds the phonon frequencies. Then the
major contribution comes from Ie−e

coll .
Generally speaking, the right-hand side of equation (7)

also contains the term (Npl/τpl)R(ε)θ(ωp − ε) giving the
contribution of plasmon decay (Npl is determined by
Eq. (6), and the characteristic function R(ε) is normal-
ized: ω−1

p

∫ εF

0 dεεR(ε) = 1). However at t > τpl this term
can be neglected.

The relaxation of an excited electron via electron-
electron collisions corresponds to two processes: 1) colli-
sions with electrons whose energy is below the Fermi level;
these collisions are accompanied by creation of electron-
hole pairs, and 2) collisions with other excitations at
ε > εF .

A general collision integral was presented in [9,15,16].
We focus on the case 1); then n(ε, t) � 1 for ε > εF , that
is, the total number of electrons greatly exceeds the num-
ber of excitations. In this case we can restrict ourselves to
the linear approximation. Then we arrive at the following
equation:

∂n(ε, t)/∂t = (λee/εF )
[
− n(ε, t)ε2/2

+ 3
∫ εF

ε

dε1(ε1 − ε)n(ε1)
]
θ(εF − ε). (8)

The solution of this equation can be written in the
following form:

n2(ε, t) = 3(λee/2εF )3/2N0ωpεt
3/2Γ

(
−1

2
,
λeeε

2t

2εF

)
(9)

where Γ (α, β) is an incomplete Euler gamma function,
and N0 is determined by equation (6). Equation (9)
describes the electronic distribution function n2(ε, t) ≡
n(ε, t) for the regime dominated by the electron-electron
collisions. One sees from equation (9) that the characteris-
tic relaxation time is dominated by the low energy region:
τ ∝ ε−2. If final temperature is above the phonon thresh-
old (see below), then

τe−e =
(
hεF /λe−e(kBT )2

)
. (9’)
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The case considered above was for n(ε, t) � 1 at
ε > εF . A different situation occurs when εin/N > Ec,
where εin is the initial energy absorbed by the system,
Ec is the phonon threshold (see below, Eq. (10)), N is
the total number of electrons. Such situation is realistic
for systems with low concentration of electrons. In this
case we are dealing with a situation when n(ε, t) ≤ 1 for
ε > εF , and collisions between the electronic excitations
play a major role (contrary to the case above, when the
main process involved the creation of electron-hole pairs).
Moreover, since the energy region is still above the phonon
threshold, we have a bottleneck scenario, i.e., slowing
down of the relaxation process. This case is amendable to
the two-temperature picture, because collisions between
the excitations at ε > εF can equilibrate the electronic
system while maintaining the inequality Te �= Tl, where Tl

is the lattice temperature.

3 Cascade. Electron-phonon collisions

3.1 General equations. The “optical phonons” stage

In the preceding section we described the initial stage of
the relaxation (cascade) process when plasmon creation
of and electron-electron collisions are the dominant pro-
cesses. The electron energy decreases as relaxation pro-
ceeds, and finally the electron-phonon collisions become
important. The intermediate region, when the contribu-
tion of both channels are similar, corresponds to the en-
ergy scale EC determined by the relation:

λeeE
2
c /εF

∼= λΩ. (10)

Subsequent decrease in energy ε � Ec results in a
the situation when the electron-phonon channel becomes
dominant. Then the distribution function is determined
by the equation:

∂n

∂t
= Ie−ph

coll (11)

Ie−ph
coll = Iopt

coll + Iac.
coll. (11’)

The first and second terms on the right-hand side of equa-
tion (11’) describe collisions with optical and acoustic
phonons, respectively. Specific expressions for the colli-
sion integrals can be obtained by using a method similar
to that employed in our paper [5].

For acoustic phonons we obtain:

Iac
coll =

{
− (λac/3)

(
ε3/Ω2

ac

)
n(ε, t) + 2(λac)/Ω2

ac

×
∫ Ωac

ε

dε1ε1(ε1 − ε)n(ε1, t)
}

θ(Ωac − ε). (12)

(This expression was derived previously in [5].)

For optical phonons we obtain the following expression
for Iopt

coll (see Appendix A1):

Iopt
coll = 4λΩopt

{
n(ε + Ω, t) − n(ε, t)θ(ε − Ωopt)

+ (2/Ωopt)
∫ ∞

Ωopt

dε1n(ε1)θ(Ωopt − ε)
}
· (13)

We assume that optical (acoustic) branches are
summed over.

The general equation (see Eq. (7)) can be written in
the form:

∂n

∂t
= Ie−e

coll + Iopt
coll + Iac

coll (7’)

where the terms on the right-hand side are determined by
equations (8, 12) and (13), respectively.

The phonon spectra of simple metals do not contain
optical modes in which case one can focus directly on Iac

coll.
However, the situation for complex compounds is entirely
different; here optical modes are playing an important
role. Usually Ωopt > Ωac. For such systems, it is natural
to consider, at first, a case when the distribution func-
tion n(ε, t) is described by equation (11) with Icoll = Iopt

coll,
see equation (13).

Let us evaluate the characteristic time τopt. describ-
ing this stage of the cascade. We introduce the quanti-
ties φK(t) defined by the relation:

φK(t) =
∫ ∞

(K+1)Ω

dε n(ε, t), K = 0, 1, 2, ... (14)

It is easy to see that these functions satisfy equations:

∂φK/∂t = −µ(φK − φK+1) (14’)

where
µ = 4λΩ.

The solution of equation (14) can be written in the form:

φK(t) = exp(−µ(t − t0))
∞∑

m=0

φK+m(0)(µ(t − t0))m/m!.

(15)
Here t0 is determined by the relation

λeeE
2
c t0/2εF = 1 (16)

which follows directly from equation (9); φK(0) ≡ φK(t0).
The functions φK(0) are continuous functions of the

parameter K, and for K < ECΩ−1 one can write:

φK(0) = φ0(0)(1 − γK), (17)

where

φ0(0) = 3
√

πN0ωp/2EC ; γ = 4Ω/
√

πEC .

With the use of these relations and equation (15), we
obtain:

φ0(t) = φ0(0)
{
1 − 4µ(t − t0)Ω/

√
πEC

}· (15’)
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This relation is valid for the range 0 < t − t0 < τ∗
opt, with

the characteristic time

τopt =
√

πEC/8λΩ2. (18)

The expression (18) determines the time scale for the
cascade stage dominated by the electron-optical phonons
scattering (Ec is determined by Eq. (10)).

Let us evaluate the electronic distribution func-
tion n(ε, t) corresponding to this stage of the cascade.
The initial function n(ε, t0) can be written as n2(t0) (see
Eq. (9)). The function of interest n3(ε, t) can be sought in
the form:

n3(ε, t) = (3N0ωpl/ΩEC)(Ω/EC)2 exp[−µ(t − t0)]

×
∞∑

m=0

[(ε/Ω) + m][µ(t − t0)]m(m!)−1

× Γ

[
−1

2
,

(
ε

EC
+

mΩ

EC

)2
]
· (19)

Since we are interested in t− t0 � µ−1, the main con-
tribution to the sum comes from the region m � 1. Then
the summation can be replaced by integration, and we ob-
tain the following analytical expression for the distribution
function:

n3(ε, t) ∼= 3N0ωpl

ΩEC

(
Ω

EC

)2

[(ε/Ω) + 4λΩ(t − t0)]

× Γ

[
−1

2
,

(
ε

EC
+

4 λΩ2(t − t0)
EC

)]
· (20)

Equation (20) describes the electronic distribution
function n3(ε, t) ≡ n(ε, t) for that part of the cascade
where the scattering of electrons by optical phonons is
dominant.

3.2 Relaxation via acoustic phonons

For many systems the final stage of the cascade involves
collisions of the carriers with acoustic phonons (see below
for a discussion of some special cases). This channel of re-
laxation was discussed by us in [5]. Here for completeness
of a whole scenario and to for some additional insight we
describe a more general derivation.

The equation for the distribution function has the fol-
lowing form:

∂n(ε, t)/∂t = 8λφ0(t) +
{
− (λac/3)

(
ε3/Ω2

a.p.

)
n(ε, t)

+ 2
(
λac/Ω2

a.p.

) ∫ Ωa.p.

ε

dε1ε1(ε1 − ε)n(ε, t)
}

θ(Ωa.p. − ε).

(21)

The distribution function can be sought in the scal-
ing form

n(ε, t) = µ2(t)U(εµ(t)) (22)

where
µ(t) = [3C1(t + t1)]1/3. (23)

Here C1, t1 are some constants (see [1]). In [1] we used a
step-like approximation for U . More complicated expres-
sion was used in [18], see below. It is worth noting that
because of the scaling form, the important and non-trivial
dependence ñ(t), where ñ is the total number of excita-
tions (see below, Eq. (27)) does not depend on the exact
form of the U -factor.

With the use of equations (21–23) we arrive, after some
manipulations, at the following expression:

U = BΓ (1/3; λa.p.(t + t1)ε3/3Ω2
a.p.. (24)

Note that the more complicated expression obtained
in [18] can be reduced to (22–24) (see Appendix A2).

As mentioned, usually Ωopt > ΩD, so that initially the
electron-phonon channel is dominated by electron-optical
phonon scattering. If the optical branches are absent (e.g.,
for simple monoatomic metals), then at ε < Ec the scat-
tering by phonons becomes essential (it is assumed that
T < Ec). One can see from equation (24) that the charac-
teristic time τac is determined by the following expression:

τac = 3 h (ΘD/T )2(λe−pkBT )−1. (25)

Using equations (22, 24), one can evaluate the total
number of excitations ñ(t) during this stage and we obtain
the dependence obtained by us in [5]

ñ(t) = n0[1 + αt]1/3 (26)

where α = (λa.p./2)ΩD. This dependence was subse-
quently also obtained in [17].

For the sample with dimensions L, there is a charac-
teristic temperature T ′ ≈ hu/kBL, so that at T < T ′
the phonon wavelength exceeds L. This frustrates the
electron-phonon interaction and the relaxation process at
T < T ′, leading to the appearance of a low temperature
bottleneck. For example, for Ag with L ≈ 45 nm and for
Au with L ≈ 30 nm [11]; then T ′ ≈ 20 K. In such a case,
electron-electron collisions again lead to the two temper-
atures picture.

A special case corresponds to situation when the ma-
terial in question is a superconductor. This case was de-
scribed by us in [5]. Here relaxation is governed by the
electron-phonon scattering for ε > 2∆, where ∆ is the
pairing energy gap. At lower energies, Cooper pair re-
combination becomes the dominant process. As we have
mentioned, this situation and its application to supercon-
ducting tunneling detectors were described in our previous
paper [5].

4 Experimental data. Discussion

The number of cascade stages for each specific practical
case is determined by the energy of initial excitations and
by the temperature of the environment. The most general
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case corresponds to the initial energy exceeding the plas-
mon energy and measurements being performed at low
temperature, near T = 0 K. In this case the cascade will
go through all channels described above (see Sects. 2, 3).
On the other hand, if T > Θopt., ΘD then the equilib-
rium which corresponds to temperature T is established,
mainly, through the electronic channels. The relaxation
time corresponding to electron-electron collisions is deter-
mined by equation (9); as was noted above, τe−e is de-
termined, mainly, by the low energy region. If T > Θopt.,
ΘD, then τ ≈ τe−e (see Eq. (9’)).

The measurements of relaxation for the Ag and Au
films are described in [11]. The experiments were per-
formed at room temperature. For such case T > ΩD

(ΩAg
D ≈ ΩAu

D ≈ 200 K), and, therefore, one can use equa-
tion (9’) in order to estimate the relaxation time. The
value of the Fermi energy for the films are εF ≈ 6×104 K.
The relaxation time depends also on the value of the elec-
tronic constant λe−e. Its value can be obtained from the
tunneling spectroscopy (see, e.g., [18,19]). Indeed, the tun-
neling spectroscopy which is usually performed for super-
conducting metals, allows to determine the Coulomb pseu-
dopotential µ∗ defined by the relation:

µ∗ = λe−e/[1 + ln(εF /Ω)]. (27)

Here λe−e = Ue−eν is the electron-electron constant,
Ue−e is the matrix element, and ν is the density of states,
Ω is the characteristic phonon frequency (for simple met-
als Ω ≈ ΩD). As is known, the value of the µ∗ is
about 0.15 for noble metals. Note, by the way, that the
value of the electron-phonon coupling for these materials is
λe−p = 0.17 (see [19]). As a result, the quantity λe−p-λe−e

is very small and this leads to these metals being normal,
not superconducting. Using this value µ∗ = 0.15, we ob-
tain from equation (27) the value of λe−e = 1.5 for Ag, Au.
Using it together with εF (see above), we obtain, employ-
ing equation (9’), a relaxation time τ = 3 ps, in agreement
with measurements in [11].

Another interesting case is relaxation via electron-
electron scattering in n-type GaAs. Such a process was
observed at room temperature in [20]. The sample was
a highly diluted semiconductor with a degenerate elec-
tronic system and carrier concentration n = 1018 cm−3.
The analysis can be based on equation (9’). The value
of the parameter λe−e for diluted Ga As can be esti-
mated from the relation λe−e = Ue−e ν, where Ue−e =
4πe2[εbq

2+k2
s ]−1 is the matrix element (see, e.g., [13,21]),

and ν = m∗kF /πh2 is the density of states . Here εB is the
background dielectric constant, q is the transferred mo-
mentum (q ≈ kF ), and ks = 0.8rskF is the screening pa-
rameter; rs = (3/4πn)−1/3aB, aB is the Bohr radius. For
GaAs ε ≈ 10, m∗ ≈ 7× 10−2; in addition, kF = (3π2n)1/3

for n = 1018. Using these values, we obtain τ ≈ 50 fs, in
agreement with the data [20].

As noted above, electron-electron collisions make the
main contribution to the relaxation time if T > Θopt., ΘD.
In the opposite case of low temperatures measurements,
so that T < ΘD, the electron-acoustic phonon channel
is important. This channel was described in detail in our

previous paper [5] and good agreement was found between
the data [23,24] and the results of the theory (Eq. (26)).

Let us discuss also relaxation in tungsten studied ex-
perimentally in [28]. This case is interesting, because W is
characterized by relatively high value of the Debay tem-
perature (ΘD ≈ 400 K, see, e.g., [22]) and, in addition,
by relatively large value of λe−p ≈ 0.3 [18]. As a result,
relaxation time is mainly determined by electron-phonon
channel (Eq. (25)). Since T ≈ 3 × 102 K, we obtain with
use of equation (25) τ ≈ τac ≈ 4 × 102 fs, in agreement
with the measurements [8].

In summary, we have developed a microscopic descrip-
tion of the relaxation cascade, a strong non-stationary
phenomenon. Generally speaking, the relaxation process
consists of several stages. It is initially dominated by elec-
tronic channels (creation of plasmons followed by electron-
electron scattering), and at lower energies electron-phonon
scattering plays a key role. We have evaluated the elec-
tronic distribution function n(ε, t) for the entire range of
energies (Eqs. (3, 9, 20), and (24)) and the characteris-
tic relaxation times (Eqs. (5, 9, 18), and (25)) for various
channels.

The research of Y.O. was supported by the CRDF Grant RP1-
2251.

Appendix

A1

The derivation of equation (13) is based on the general
expression for the collision integral obtained by A. Larkin
and one of the authors [25,26] (see also our paper [5]):

Iph =
iλ
4π

∫
dΩp1

∫
dε1

2π
Tr

{
δ̂p̄(ε)δ̂p̄1(ε1)

[
ˆ̃Dp̄−p̄1(ε1 − ε)

× (fp̄(ε) − fp̄1(ε1)) +
(
DR

p̄−p̄1
(ε1 − ε) − DA

p̄−p̄1
(ε1 − ε)

)
× (1 − fp̄(ε)fp̄1(ε1))

]}
· (A.1)

Here λ is the electron-phonon coupling constant, δp =
(ĝR

p − ĝA
p )/2, ĝ

A(R)
p are the advanced (retarded) elec-

tronic Green’s functions integrated over energy [27,28],
f = 1 − 2n(ε, t), where n(ε, t) is the quasiparticle dis-
tribution function, and DR(A) is the retarded (advanced)
phonon Green’s function:

DR
k (ω) = DA∗

k (ω) = −Ω2
(
k̄
) [

Ω2
(
k̄
) − (ω + iδ)2

]−1

(A.1’)
into which one can substitute an appropriate dispersion
relation for the optical or acoustic phonons. In addition,

ˆ̃Dp̄(ω) =
(
DR

p − DA
p

)
(1 + 2Nph(|ω|))sgn ω (A.1”)

where N is the phonon distribution function.
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With the use of these expressions and equation (A.1),
we obtain (cf. [1]):

∂n(ε)/∂t = 4λΩ{−n(ε)θ(ε − Ω)
+ n(ε + Ω) + Nph(Ω − ε)} (A.2)

∂Nph/∂t = 4λΩ/Λ

{
2

∫ ∞

Ω

dεn(ε) − ΩNph

}
· (A.2’)

Here Λ is the width of the phonon band. In the first
approximation we can neglect the derivative ∂Nph/∂t
(cf. [5]). Excluding Nph from equations (A.1, A.2), we ar-
rive at equation (13).

A2

Equation (21) can also be analyzed by a different method.
It can be rewritten as follows:

∂2z/∂t∂ε = −2λa.p.(ε/Ωa.p.)2z − λa.p.

(
ε3/3Ω2

a.p.

)
∂z/∂ε
(A.3)

where

z = ∂n(ε, t)/∂ε.

The solution of equation (A.3) can be sought in the
following form:

z = exp
[−λa.p.tε

3/3Ω2
a.p.

]
φ(ε, t). (A.4)

With the use of equations (A.3, A.4), we obtain:

∂2φ/∂ε∂t − λ̃(t∂φ/∂t − φ) = 0 (A.5)

λ̃a.p. = λa.p.ε
2/Ω2

a.p..

The solution of this equation has the form:

φ(ε, t) = φ1(ε) + tφ2(ε). (A.5’)

Here φ1(ε) = ∂n0(ε)
∂ε , and φ2 is determined by the relation

∂φ2/∂ε = −λ̃a.p.φ1. As a result we obtain the following
expression:

n(ε, t) = n0(ε) exp
(−λa.p.tε

3/3Ω2
a.p.

)
+ 2λa.p.t/Ω2

a.p.

∫ ∞

ε

dε1 exp
(−λa.p.tε

3
1/3Ω2

a.p.

)
µ(ε1)

(A.6)

where µ(ε1) =
∫ ∞

ε1

dε2ε2n0(ε2). (A.6’)

Equation (A.6) was previously obtained in [17]. We can
put ε1 = 0 in (A.6’), and after a short interval, the
first term will become small and we arrive at expres-
sions (22, 24).
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